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Abstract

There is now growing evidence that people are sensitive to the statistical regularities embedded

into linguistic utterances, but the exact nature of the distributional information to which human

performance is sensitive is an issue that has been surprisingly neglected as yet. In order to

address this issue, we first propose an overview of some basic measures of association, going

from the simple co-occurrence frequency to the normative measure of contingency, rw: We then

report an experiment collecting judgments of word-likeness as a function of the relationship

between the phonemes composing the rimes (VC). The contingency between Vs and Cs, as

assessed by rw; was the best predictor of children and adult judgments. Surprisingly, the forward

transitional probability ðPðC=VÞ; which is the main measure considered by language researchers,

was a poor predictor of performance, whereas the backward transitional probability ðPðV=CÞ)

made a sizeable contribution. We then analyze the ability of computational models to account for

these results, successively considering a connectionist model based on the automatic computation

of statistical regularities (SRN) [Cogn. Sci. 14 (1990) 179] and a model in which the sensitivity

to statistical regularities emerges as a by-product of the attentional processing of the incoming

information (Parser) [J. Memory Language 39 (1998) 246]. Somewhat ironically, Parser, which

implements no specific mechanisms for statistical computations, proves to be a better predictor of

performance than the SRN. The generality of these results, and their implications for the issue of

automaticity, are discussed.
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Since the early 1960s, the study of language is mainly related to the computational view of

mind, in which symbolic information is processed through the application of formal rules.

However, there is now growing evidence that people are also sensitive to the statistical

regularities embedded into linguistic utterances. Because this sensitivity is necessarily

acquired as a function of subjects’ exposure to the language, such findings have led to a

progressive decay of innatist views at the profit of theoretical perspectives centered on

learning.

Many new questions arise as a consequence of this conceptual shift. The questions that

will be addressed in this article are the following: what statistical regularities are learned

by human subjects, and to what extent can their learning be thought of as automatic? In

order to explore possible answers, let us consider an example taken from the domain of

written language. In French, the phoneme /o/ can be transcribed with different graphemes,

such as ‘o’, ‘au’, ‘eau’, ‘ot’, and so on. Which grapheme is used in a given case depends on

various variables, such as the position of /o/ within words and the consonantic

environment. For instance, in medial position, /o/ is more often spelled ‘o’ than ‘au’

between ‘b’ and ‘r’ but is more often spelled ‘au’ than ‘o’ between ‘p’ and ‘v’. Likewise, in

final position, /o/ is frequently transcribed ‘eau’ after ‘r’ or ‘t’, but is never transcribed

‘eau’ after ‘f’. Experimental data (Pacton, Fayol, & Perruchet, 2002) show that children

become progressively sensitive to these graphotactic regularities. For instance, when

asked to write non-words such as /bitavo/ and /bylefo/, children used the grapheme ‘eau’

more often in the former case than in the latter. This context effect was obtained as early as

Grade 2, and increased further with grade level (6% in Grade 2, 27% in Grade 3 and 45.8%

in Grade 4). Similar results were reported for other orthographic regularities in French

(Pacton, Perruchet, Fayol, & Cleeremans, 2001) and in English (Cassar & Treiman, 1997).

Such learning can be labeled as automatic in several respects. It occurs without any

directed teaching. This kind of regularity is not mentioned in textbooks, and is never

pointed out to children by teachers or parents. Moreover, it is not a part of children’s, or

even adults’ explicit knowledge. When people are questioned about the existence of

phonotactic or graphotactic regularities (e.g. can /fo/ be spelled ‘feau’ at the end of

words?), their only available strategy consists in mentally scanning a few relevant words

(those endings by /fo/ in our example) in order to surmise a response. Irrespective of the

success of this strategy, it appears manifest that people do not use it when asked to spell

/bitavo/ and /bylefo/. In other words, performance is not mediated by the intentional

exploitation of explicit knowledge. These properties allow an assertion that the sensitivity

to statistical regularities is the product of what is now coined ‘implicit learning’ (for

overviews, see: Berry & Dienes, 1993; Cleeremans, Destrebecqz, & Boyer, 1998). But this

is the point at which consensus ends and a far-reaching conceptual bifurcation is opened.

The above depiction suggests that children are endowed with an ability to automatically

compute statistics when exposed to a linguistic corpus. Children would perform various

statistical analyses of the raw data without being consciously aware of the computations

that occur in their mind. Arguably, the assumption that unconscious computations follow

the very same algorithms that a statistician would follow when faced with the same data is

somewhat implausible. However, the development of connectionist models suggests an

alternative, and more attractive solution. The discovery of statistical regularity is

performed by the progressive tuning of the connection weights between units within
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multilayer networks, a structure that has some (accordingly remote) similarity with the

structure of a human brain. The simple recurrent networks (SRN), initially proposed by

Elman (1990), have been the most widely applied to sequential learning. SRNs are

typically trained to predict the next element of sequences presented one element at a time,

and are therefore particularly appropriate to develop sensitivity to the sequential structure

of the language. The introduction of SRNs and other connectionist networks provides

some amount of biological plausibility to the idea that statistical computations are

performed in the human brain (although several connectionist algorithms, including the

SRN, do not correspond directly to any standard statistical method, see Redington and

Chater (1998)). With regard to our concern about automaticity, this conception entails that

sophisticated computations take place in our minds without any attentional and conscious

counterpart.

To many, this interpretation is mandatory. However, there is an alternate way of

thinking about the behavioral sensitivity to statistical regularity. In this alternative

conception, sensitivity to statistical regularities is not the result of statistical computations

on individual elements, but is the by-product of the local representations of chunks of

individual elements. Indeed, there are ‘two ways of learning associations’ (Boucher &

Dienes, 2003), and the question is open whether chunking is an emergent property of

statistical analyses, or a primitive process the result of which amounts to simulate

statistical computations. Although the notion of chunk is not necessarily linked to the

concepts of attention and consciousness, we will consider hereafter that a chunk brings

together the elements that are at the focus of one’s attention at a given moment, and hence

constitutes the momentary content of one’s phenomenal consciousness (Perruchet &

Vinter, 2002) .2 How does this alternative conception work in the above example? Instead

of considering that some computations of the relations between, say, ‘v’ and ‘eau’ occur in

people’s minds, it can be assumed that the attentional processing of different spellings of /

vo/ naturally leads to increasing familiarity with some spellings at the expense of others, as

a consequence of elementary mechanisms of associative memory: the memory traces of

the more frequent segments are strengthened whereas the less frequent segments are

forgotten. This, and a few other very simple mechanisms have been exploited in Parser, a

computational model initially devised to discover words from a non-segmented speech

flow (Perruchet & Vinter, 1998).

These two broad conceptions of learning obviously lead to quite different views about

the automaticity of behavioral sensitivity to statistical regularities. However, before

exploring these implications in more detail in the general discussion, we have to examine

whether these conceptions are equally powered to account for the data. This requires

an identification of the precise nature of the distributional information to which human

subjects are sensitive, an issue that has been surprisingly neglected to date. After an

overview of some basic statistical measures of association, we will examine which of them

are predictive of human performance in a specific context, namely the relation between

phonemes at an intra-syllabic level. Then we analyze the ability of models to account for

2 In fact, the following experimental and simulation studies, with the exception of the final discussion about

automaticity, do not depend on this postulate, and hence (hopefully) remains of interest for the readers who do not

endorse this view.
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these results, successively considering Elman’s (1990) SRN, which involves the

(automatic) computation of statistical regularities and Perruchet and Vinter’s (1998)

Parser, which relies on the (attentional) chunking of the incoming information.

1. Statistical measures of association

Although it is obviously possible to envision relationships between three and more

events, here we will be restricted to the case of two successive events, e1 and e2. To

explore the various measures of the relationships between e1 and e2, let us consider a 2 £ 2

contingency matrix (Table 1) where a stands for the number of e1–e2 co-occurrences, b for

the number of occurrences of e1 followed by an event different from e2, c for the number

of occurrences of e2 preceded by an event different from e1, and d for the number of

events comprising neither e1 nor e2.

A first index of relationship is given by a; which represents the frequency of e1–e2

pairs. The co-occurrence frequency is obviously relevant to our concerns. In the simplified

presentation of the rational underlying Parser in the introductory section, we alluded only

to the relative frequency of ‘feau’, ‘fo’, ‘fau’, and other spellings of /fo/, to account for

children preferences. However, the pure co-occurrence frequency is quite limited as an

indicator of relationships between two events. A more relevant measure is provided by the

conditional or transitional probability (TP). The TP, Pðe2=e1Þ; is the probability that e1 is

followed by e2, and can be computed as

TP ¼
a

a þ b
ðaÞ ð1Þ

Many authors (Peña, Bonatti, Nespor, & Mehler, 2002; Saffran, Newport, & Aslin, 1996)

consider only the TP when they intend to quantify an association, for reasons that are

somewhat unclear. Indeed, TP as such provides only part of the relevant information. In

order to obtain a more reliable indicator of association, the TP ðPðe2=e1ÞÞ must be

compared to the probability of e2 when not preceded by e1. There is a predictive relation

between e1 and e2 when the probability of e2 is larger in the presence than in the absence

of e1. The resulting statistic is Delta P ðDPÞ; which stands as:

DP ¼
a

a þ b
2

c

c þ d
ðbÞ ð2Þ

Shanks (1995), for instance, considers that DP is the normative measure of contingency,

insofar as causal prediction is involved. Indeed, this measure indicates how well e2 can be

Table 1

A contingency matrix

e2

þ 2

e1 þ a b

2 c d
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predicted from e1. It is analog to a regression coefficient when data are dichotomic instead

of continuous.

However, the strength of an association may also be related to the backward

relationship between e1 and e2. Let us consider the TP and DP when e1 has to be inferred

from e2. These coefficients will be denoted as TR0 and DP0; respectively,

TP0 ¼
a

a þ c
ðcÞ ð3Þ

and

DP0 ¼
a

a þ c
2

b

b þ d
ðdÞ ð4Þ

Talking about ‘backward’ relations is potentially misguiding, because it suggests either (a)

that the order of occurrence of e1 and e2 is reversed, or at least taken as irrelevant (which is

obviously incorrect) or (b) that these statistics are aimed at predicting a past event, hence

measuring information devoid of any adaptive function. Certainly, this explains why these

measures are virtually ignored in the current literature. In fact, TP0 and DP0 can be thought

of as measuring the degree to which e1 is the only predictor of e2. Assuming the forward

TP fixed, the interest of considering the relations between e1 and e2 might still vary as a

function of whether there are predictors of e2 other than e1. If, for instance, there are better

or more salient predictors, it may be adaptive to ignore e1 to focus on more relevant

events, irrespective of whether e1 carries some predictive information when it is

considered in isolation.

It makes sense to conceive that the tightness of the association between e1 and e2

depends on both forward and backward relationships. Accordingly, the standard measure

of correlation, Pearson r; measures the two-way dependency between e1 and e2. With

dichotomic data, Pearson r is commonly called “r phi” ðrwÞ; and expressed as:

rw ¼
ad 2 bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða þ bÞ £ ðc þ dÞ £ ða þ cÞ £ ðb þ dÞ
p ðeÞ ð5Þ

Interestingly, rw can also be expressed as the geometric mean of forward and backward DP

(see Appendix A):

rw ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
DP £ DP0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

a þ b
2

c

c þ d

� �
a

a þ c
2

b

b þ d

� �s
ðf Þ ð6Þ

Eq. (6) makes more clear than Eq. (5) the increasing sophistication of the possible

measures of association between two events, insofar as the Eqs. (1)–(4) are clearly

embedded into it. Of course, other intermediary measures can be considered between the

simple co-occurrence frequency and rw; and there are also alternative measures of

association, based on other metrics (such as Mutual Information, which also assesses bi-

directional relations). However, we limit ourselves below to considering the measures

above, which are clearly hierarchized along a common metric. Which of these measures is

human behavior the more sensitive to?
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2. Which association measure is the best predictor of human behavior? The case

of intra-syllabic phoneme relationships

Somewhat paradoxically in view of the upsurge of distributional approaches in recent

years, the number of studies aimed at comparing the relevance of different measures of

association in language is quite limited (for an example, see the comparison between

frequency and TP in Aslin, Saffran and Newport (1998)). As a rule, authors select a given

coefficient (e.g. the TP in Peña et al. (2002)), rw in Treiman, Kessler, Knewasser, Tincoff

and Bowman (2000), but without explicit justification, and without considering alternative

measures. This state of affairs is damaging because, without special care in the selection of

the material, these measures exhibit substantial correlations. Thus it is unclear whether the

effect attributed to the selected measure (e.g. TP) is not due in fact to another, correlated

measure (e.g. rw).

In this section, we report experimental data aimed at exploring a range of measures in

the specific case of intra-syllabic relations. More precisely, we focus on the relationship

between vowel (V) and consonant (C) in the terminal syllable of words. Focusing on VC

biphones is justified by the fact that the analysis of linguistic corpus suggests that there are

strong probabilistic constraints on the VC combinations in the rimes, at least in English

(Kessler & Treiman, 1997) and in French (Peereman & Content, 1997; Peereman,

Dubois-Dunilac, Perruchet, & Content, 2003). Consistent with the structure of the data,

behavioral data also suggest that rimes have a special role in the behavior of children and

adults (Bryant, MacLean, Bradley, & Crossland, 1990; Goswami, 1986; Jared, 2002;

Treiman, 1994; Treiman, Mullenix, Bijeljac-Babic, & Richmond-Welty, 1995; Wise,

Olson, & Treiman, 1990). For instance, Treiman et al. (2000) report that 2 and 48 grade

children judge nonsense CVC syllables as more wordlike when the rime includes highly

contingent vowels and coda (as assessed by rw).

The Brulex lexical database (Content, Mousty, & Radeau, 1990) identifies 170 different

VC rimes in the French language. When computed over the whole set of VC rimes, the

mean value of the measures of association between V and C is surprisingly low. For

instance, the mean value of rw is 0.015, that is, close to zero. Does this mean that

contingency information would be irrelevant? Two reasons suggest not. First, when the

values of the marginal means of a contingency matrix analog to that of Table 1 are not

equilibrated (as is typically the case for language), the maximum value of rw never reaches

one. Overall, on the 170 VC rimes, the average of the maximum value that rw can take

given the marginal distributions is 0.520. But there is a second, more important reason.

Given that the sample of V and C is finite, a positive contingency for a given VC string

entails more or less mechanically that the contingency for the other pairs embedding either

V or C will tend to zero or become negative. And indeed, 92 out of the 170 rw; that is to say

more than half of them, are negative. But the point of interest is that contingency is

positive for the most frequent items. For instance, the mean rw for the 10 most frequent VC

rimes is 0.318. For TP and TP0; the corresponding mean values are 0.421 and 0.483,

respectively. Thus the sensitivity to rw and other measures of association is adaptive,

insofar as it should allow learning of the most frequent rimes.

Table 2 (upper panel) reports the intercorrelations between the statistics presented

above. The higher correlations (around 0.90) are between TP and DP on the one hand,
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and TP0 and DP0 on the other hand. By contrast, the lower correlations are between statistics

considering the relations in the forward and backward orders. For instance, the correlation

between TP ðPðC=VÞÞ and TP0 ðPðV=CÞ) is only 0.255. Overall, the correlations between the

main measures, although substantial, appear sufficiently far from one to justify our project,

namely to search for the measure that is the best predictor of performance.

The following experiment is inspired from Treiman et al. (2000). Children and adults

were presented with pairs of nonsense syllables differing by their rime. They were asked to

indicate which of two CVC syllables sounded the most like French words. The rationale is

to put in relation the degree to which each VC biphone sounds natural with its statistical

characteristics, as assessed by the different associative measures considered above.

2.1. Method

2.1.1. Participants

Forty one children and 18 adults participated in the experiment. Children were divided

into two age groups ðM ¼ 5:7 years : n ¼ 20; M ¼ 8:9 years : n ¼ 21Þ: Each age group

corresponded to one school level, the youngest children coming from the last kindergarten

grade and the oldest children coming from the third elementary grade. Adults were

students majoring in psychology.

2.1.2. Material

Twenty four VC rimes were selected from the set of legal French rimes. They were

chosen in order to fill in at best a 2 £ 2 matrix, defined by the crossing of the frequency of

the VC rimes, and the internal contingency assessed by the rw between the two phonemes.

Thus six VC rimes were both frequent and contingent, six rimes were frequent but not

contingent, six rimes were rare and contingent, and six rimes were rare and not contingent.

Frequency and contingency measures were computed from the Brulex database (Content

et al., 1990). It is worth stressing that, due to the correlations between the frequency and

the contingency of intra-syllabic components in natural language (Pearson’s r ¼ 0:715

Table 2

The correlations in the matrix of the upper panel were computed across the whole population of 170 VC rimes

ending words in French

Frequency TP TP0 DP DP0 rw

Freq. 1

TP 0.593 1

TP0 0.573 0.255 1

DP 0.51 0.941 0.335 1

DP0 0.519 0.334 0.898 0.468 1

rw 0.715 0.687 0.652 0.776 0.783 1

Children 0.504* 0.382 0.495* 0.534* 0.548* 0.600**

Adults 0.561** 0.355 0.619** 0.603** 0.679** 0.733**

The correlations with children and adult performances, shown in the lower panel, were computed across the

sample of 23 VC used in the experiment (* ¼ ,0.05; ** ¼ ,0.005).
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in French), it was not possible to obtain a perfectly orthogonal design. This lack of

orthogonality is not detrimental for our objective, because correlational method rather than

ANOVAS will be used in the analysis. For the purpose of the experiment, each of the VC

rimes of one given cell of the 2 £ 2 matrix was paired with one rime belonging to each of

the three other cells. Pairing of the rimes was performed in order to contrast the rime either

on frequency or contingency (or both). This operation resulted in 36 pairs of rimes. Then a

consonant was added before each VC rime, with the proviso that the resulting CVC

syllables did not correspond to French words, and that the CV unit resulting from the

addition of the initial C was neither frequent nor contingent. The same consonant was

added to the two VC rimes of a given pair. Appendix B presents the VC rimes and the final

to-be-compared syllables. Two lists of 36 pairs of syllables were built, which differed by

the order of succession of the pairs, and by the order of the syllables within each pair. The

material was recorded by a female native speaker of French and digitalized (16 bits,

44.1 kHz), then transferred on a DAT recorder.

2.1.3. Procedure

Participants were tested individually in a quiet room. They were instructed that they

had to listen to a list of pairs of syllables, and to decide which member of each pair was the

most wordlike in French. Participants were randomly ascribed one of the two lists. Each

pair of syllables was displayed twice in succession. One trial began by a brief auditory

warning signal, followed 500 ms later by the first syllable of the pair. The interval between

each syllable of a pair was 900 ms. The interval between the two repetitions of the same

pair was 1500 ms. The next sound signal occurred immediately after the participants’

response.

2.2. Results

A score of preference for each syllable was computed as being the number of

participants selecting this syllable within a pair, then the scores were pooled over the three

syllables involving the same VC rime. Pearson correlations were computed across the VC

rimes between participants’ preference and the different statistical measures of

association. One VC rime (/ég/, which occurs only in the French word ‘Touareg’) out

of the 24 was removed from the analysis, because its pattern of associative measures was

quite atypical.

Because the results for kindergarten and third-graders did not differ in any interesting

way, the two groups of children were pooled, so that data were analyzed for children on the

one hand, and adults on the other hand. Results are reported at the bottom of Table 2.

Participant’s preferences were significantly correlated with most measures of association.

For both children and adults, the strongest correlation was with rw: Somewhat surprisingly

given the usual focus on this measure when assessing the statistical structure of linguistic

material, the standard, forward TP was the only measure to not reach significance at the

conventional threshold ðp ¼ 0:072 for children; p ¼ 0:096 for adultsÞ: Stepwise

regression analyses showed that rw significantly improved predictions made on the basis

of TP (F to enter, Children: 6.86, p ¼ 0:016; F to enter, Adults: 17.85, p , 0:001). In fact,

correlations tended to be stronger when the dependency measures were computed in
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the reverse order than in the standard way. However, rw also improved prediction made

on the basis of TP0; although the augmentation was only marginally significant for children

(F to enter, Children: 3.49, p ¼ 0:076; F to enter, Adults: 6.69, p ¼ 0:018).

The correlations of participants’ preference with the frequency of the VC rimes were

sizeable and significant. However, the strong correlation observed between frequency and

rw across the whole set of VC rimes in French prompts us to be cautious in assessing the

importance of co-occurrence frequency. In fact, when frequency and rw were entered

together as predictors of participants’ preferences into a multiple regression analysis,

frequency lost any predictive value (F , 1 in Children and Adults). Of course, this does

not demonstrate that frequency as such did not play any role in preference judgments, but

results do not allow us to reject this interpretation. On the other hand, when frequency was

entered first, entering rw improved prediction in a way that was significant in Adults (F to

enter ¼ 9:91; p ¼ 0:005) and marginally significant in Children (F to enter ¼ 3:23;

p ¼ 0:087).

2.3. Discussion

This experiment shows that the judgment of children and adults as to the wordlikeness

of CVC nonsense syllables is strongly dependent on the degree of association between the

phonemes composing the rimes. This result confirms the results of Treiman et al. (2000) in

English, and more generally, the growing number of studies showing that subjects are

sensitive to the phonotactic or graphotactic regularities of their language. However, this

experiment also reveals that the various statistical measures of association are not equally

good predictors of human judgments. Surprisingly, the forward TP ðPðC=VÞ for a VC

rime), which is often the only statistic to be considered, was the worse predictor among our

sample of measures. Moreover, statistics taking into account the degree to which V has

competitors for the prediction of C appeared more closely associated with performance

than the standard measure. This stands true for TP0; and to a lesser extent, for DP0:

Finally, consistent with the two-way dependency revealed by the significance of both

DP and DP0; rw; which is the geometric mean of the two coefficients, appeared to be the

best predictor of performance, and added some predictive value when the other measures

(taken individually) were partialized out. Although the correlations of frequency with

participants’ preferences were substantial when considered in isolation, the data were

compatible with an interpretation positing that these correlations ought to be attributed to

the association between frequency and rw: Note that this result, which somewhat

undermines the importance often ascribed to the simple frequency, can hardly be imputed

to a bias in our sample of syllables, since care was taken to include both low- and high-

frequency items in our experimental material.

3. Testing models

How well are the two models presented in Section 1 able to reproduce these results?

One strategy would consist in training models with the same linguistic corpus to which

children were exposed. Here we adopt an alternative strategy, in which the models are
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trained with a miniature database, specially devised to address in proper conditions a

limited number of selected issues. Data collected in the Section 2 show that, with respect

to intra-syllabic phonemic relations, (1) children and adults are only moderately sensitive

to the raw co-occurrence frequency, (2) they are as much—and even more—sensitive to

the backward relationship between C and V as to the standard, forward, prediction that V

allows about C, and (3) as a consequence, performance is the most sensitive to the two-

way dependency between phonemes as assessed by the rw coefficient. In order to explore

whether models are able to account for these results, we built a database in which the

contrast between the different measures of association, and notably between forward and

backward relationships, was maximized. In addition, this alternative approach allowed the

elimination of a number a features that are certainly relevant for the processing of the VC

rime in natural language, but which are of no concern here. For instance, VC rimes are

commonly embedded into a continuous speech stream, but some occur before a natural

segmentation cue (e.g. when they end a phrase), a feature that may help the formation of a

VC unit. Also, rime processing may depend on the nature of its constituents. For instance,

Peereman et al. (2003) showed that the relations between the onset and the vowel depends

on the sonority contrast between C and V, and it is possible that similar effects occur for

the rimes. Although interesting on their own, these effects could interact in unknown ways

with the effects of the statistical relationships between C and V, which are of interest here.

The data used for the simulations are displayed in Table 3. Twelve pairs of characters,

each character standing for a phoneme and each pair standing for a VC rime, were

randomly ordered to form a sequence, and this procedure was repeated 100 times to form a

continuous stream of 2400 phonemes. One rime (AB) was maximally associated, as

expressed by all of our measures. Indeed, A is always followed by B, and B is always

preceded by A. Another rime (ED) is the opposite: E can be followed by other consonants

than D, and D can be preceded by other vowels than E. The other rimes lie somewhere

between these extremes, in a design that allows an independent consideration of forward

Table 3

Material used for the simulations

C is always preceded by the

same V

YES NO

V is always followed by the same C YES AB ID

ŒD

UD

YD

OD

NO EJ ED

EK

EL

EM

EN

The measures of association for each pair are shown in Table 4.
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and backward relationships. To see how this works, the reader is invited to examine

Table 4. This table shows the values for a; b; c; and d; which are needed to fill in the

contingency matrix depicted in Table 1, and the different measures of associations

between the pairs of phonemes composing the material. Table 4 includes three pairs

straddling the 12 original VC rimes, namely: (1) DE, which turns out to be more than three

times most frequent than the original VC rimes, but only moderately contingent, and (2)

DA and BE, which are the more frequent (after DE) among the inter-unit pairs. Note that

the specific symbols composing the cells of Table 3 have been selected arbitrarily, except

that, to facilitate reading, the symbols standing for V are vowels and the symbols standing

for C are consonants (of course, the label of the items was irrelevant for the simulations).

3.1. Simulations with SRN

The SRN, initially proposed by Elman (1990) (see also Cleeremans, Servan-Schreiber,

& McClelland, 1989) is one of the most influential connectionist models in the implicit

learning literature and, to a lesser degree in language research. SRNs are typically trained

to predict the next element of sequences presented one element at a time to the network

and are therefore particularly appropriate to develop a sensitivity to sequential structure.

The network is presented, at each time step, with element t of a sequence, and with a copy

of its own internal state (i.e. the vector of hidden units activations) at time step t 2 1: On

the basis of these inputs, the network predicts element t þ 1 of the sequence. The

network’s prediction responses are compared with the actual successor of the sequence,

Table 4

Columns labeled a, b, c, and d, report the frequencies needed to fill in the cells of the contingency matrix shown in

Table 1, for the 12 VC rimes presented in Table 3, and for 3 selected CV pairs generated when the rimes are

placed in succession

a b c d TP TP0 DP DP0 rw SRN Parser

AB 100 0 0 2299 1.000 1.000 1.000 1.000 1.000 0.980 810.6053

ID 100 0 500 1799 1.000 0.167 0.783 0.167 0.361 0.990 469.5043

ŒD 100 0 500 1799 1.000 0.167 0.783 0.167 0.361 0.990 508.0013

UD 100 0 500 1799 1.000 0.167 0.783 0.167 0.361 0.990 500.3768

YD 100 0 500 1799 1.000 0.167 0.783 0.167 0.361 0.990 482.4033

OD 100 0 500 1799 1.000 0.167 0.783 0.167 0.361 0.990 492.0773

EJ 100 500 0 1799 0.167 1.000 0.167 0.783 0.361 0.160 476.4286

EK 100 500 0 1799 0.167 1.000 0.167 0.783 0.361 0.150 452.1058

EL 100 500 0 1799 0.167 1.000 0.167 0.783 0.361 0.160 457.355

EM 100 500 0 1799 0.167 1.000 0.167 0.783 0.361 0.160 414.2585

EN 100 500 0 1799 0.167 1.000 0.167 0.783 0.361 0.160 426.9071

ED 100 500 500 1299 0.167 0.167 20.111 20.111 20.111 0.150 151.5972

DE 312 287 288 1512 0.521 0.520 0.361 0.360 0.361 0.520 134.3081

DA 57 542 43 1757 0.095 0.570 0.071 0.334 0.154 0.090 0.000

BE 57 43 543 1756 0.570 0.095 0.334 0.071 0.154 0.570 0.000

For each item, the table also reports the value of the different associative measures, and the results of the

simulations with SRN and Parser.
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and the resulting error signal is then used to modify its connection weights using the back-

propagation algorithm.

To assess the SRN’s ability to capture our data, we trained an SRN using Tlearn

(Plunkett & Elman, 1997). There were 14 units in both input and output layers (one unit for

each of the phonemes displayed in Table 3) and 20 hidden units. Unit activation ranged

from 0 to 1, and the learning rate was set to 0.01. The whole database of 2400 phonemes

described above was presented during each epoch. The network was trained for a total of

400 epochs. Network performance for the rime AB was assessed as the activation of the

output unit corresponding to the phoneme B after the network had been presented with A,

after averaging across all the occurrences of AB in the last epoch, and likewise for the

other pairs.

The main results are shown in the penultimate column of Table 4. It appears that SRN’s

predictions match nearly perfectly the forward TP, Pðe2=e1Þ: This stands true for the

selection of pairs shown in Table 4, but also for all the pairs generated in the sequence

ðN ¼ 60Þ; so that the correlation between the two measures reached 0.999, as reported in

Table 5 (first line). Tables 4 and 5 also show that SRN’s predictions are closely related toDP;

a result that is hardly surprising, given that TP and DP are themselves related. By contrast,

SRN’s predictions were only weakly correlated with the TP0 andDP0:Finally, the correlation

of SRN’s predictions was 0.571 with the co-occurrence frequency, and 0.690 with rw:

Overall, the correlations of SRN’s prediction with both frequency and rw fit actual

subjects’ performance reasonably well. However, the network was exclusively

sensitive to the forward relationship between V and C, whereas human participants

were also, and still more, sensitive to the backward relationship between C and V. The

mismatch between simulated and actual performance was not due to the choice of

specific simulation parameters: although the full range of possible variations was not

explored, the same pattern was obtained using different numbers of hidden units and a

different learning rate. Furthermore, irrespective of human performance, it is worth

stressing that the SRN is quite poor at discovering the original VC units composing

the material. If one considers that the probability of formation of a given e1–e2 unit

is proportional to the output activation of e2 when e1 is presented, it appears that the

network created many CV units before the correct VC units. In fact, exploiting the

network’s results to segment the material leads to a formation of all the units ending

Table 5

Correlations between the predictions of SRN (first line) and Parser (second line) and the statistical properties of

the pairs of phonemes, as described by the different measures of association

Frequency TP TP0 DP DP0 rw

SRN 0.571 0.999 0.090 0.967 0.215 0.690

Parser 0.630 0.703 0.649 0.794 0.745 0.894

Children 0.504* 0.382 0.495* 0.534* 0.548* 0.600**

Adults 0.561** 0.355 0.619** 0.603** 0.679** 0.733**

Correlations were computed across the 60 pairs of phonemes generated when the material displayed in Table

3 is presented in succession. For the sake of commodity, the correlations obtained in the experiment and reported

in Table 2 are also reprinted (lower panel).
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with E (which straddle the initial units) before discovering those of the initial units

that begin with E.

3.2. Simulations with Parser

Parser is based on the postulate that the sensitivity to the distributional structure of the

material emerges as the natural by-product of the attentional processing of the incoming

information. Only basic principles of associative learning and memory are involved. The

primitives that are perceived within one attentional focus as a consequence of their spatial

or temporal proximity are assumed to become the constituents of a new representational

chunk. If the same primitives are no longer perceived together, the representation of the

chunk rapidly vanishes, as a consequence of both natural decay and interference with the

processing of similar material. However, if the same percept re-occurs, the representation

of the chunk is progressively strengthened, and serves to guide further perception.

Originally, Parser was developed (Perruchet & Vinter, 1998) to deal with the situations

proposed by Saffran et al. (1996), in which participants have to find the words forming an

artificial language presented as an unbroken sequence of syllables. Its application to the

present issue raised no special problem. The only changes brought to the version used in

Perruchet and Vinter (1998) were the following: (1) the syllables, which served as

primitives in the original version, were replaced by phonemes, (2) the rate of forgetting

and interference were both set to 0.025, in order to deal with the new material,3 and (3)

although in the original version, perception was guided by the longest representational unit

available in memory whenever several candidate units were possible, perception was

shaped here by the shortest unit. Although this change does not prevent the formation of

long units if long units turn out to be frequent enough, it favors the emergence of two-

phoneme units, which are of primary concern here. The remaining parameters and the

whole algorithm were left unchanged, so the reader may refer to Perruchet and Vinter

(1998) for precisions about the characteristics of the model.

Parser received as input exactly the same material that was processed by the SRN, namely

the corpus of 2400 phonemes, except that learning was stopped after five epochs instead of

400. In Parser, each item in memory is ascribed a weight, which increases when the item is

perceived and otherwise decreases. The weights were taken to be the dependent variable

(note that their absolute value is arbitrary, only their relative value is relevant). Table 4

(rightmost column) gives the weight of each biphone at the end of training, after averaging

across 20 runs. Although the weights obtained by Parser correlated substantially with those

provided by the SRN ðr ¼ 0:694; N ¼ 60Þ; there were also striking differences. The AB unit,

which is the most contingent, had the highest weight. Following a decreasing order along a

contingency scale, the following units were those in which e1 has several successors, or e2

3 Because the rates of forgetting and interference depends on the aspects of the material that the model is not

designed to detect (e.g. the degree of similarity between-items), these values need to be adjusted for each study.

As in most computer simulations, the present values were those that provided the best fit with expected

performance (after a cursory exploration of the parameters space). Although not fully satisfactory, this method

provides at least an existence proof that expected performance are included in the solution space of the model. It

can also serves as an heuristic tool of research, as pointed out later in the text. For a discussion, and a better

method to deal with this issue, see Boucher and Dienes (2003).
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has several predecessors. The weights of the two categories of items were approximately

equal. Finally, ED, which is the least contingent of the 12 initial units, had the lowest weight.

As it appears in Table 5 (second line), which shows the correlations computed over all the

units, this pattern translated into a strong correlation of the weights with rw; and correlations

of approximately equal size with TP and DP according to their directionality.

It is noteworthy that Parser proved to be very good at discovering the initial units.

Those units were discovered very early in training, and only those units were

discovered with the exception of DE (i.e. the weight of the other pairs straddling the

initial units was zero). In fact, the weight of DE was lower than those of the initial

units. This result was unexpected. Why, for instance, was the weight of DE lower

than the weight of ED, given that DE is more frequent than ED (312 vs. 100), that

both forward and backward transitional probabilities are higher for DE than for ED

(0.521 vs. 0.167 in both cases), and that DE is more contingent than ED (rw ¼ 0:361

vs. 20.111)? To shed light on this question, we look at the dynamic of the learning

process. Fig. 1 reports the evolution of the weights throughout the training process. It

appears that DE was discovered early in practice, and kept the highest weight for a

time. However, further training led to gradual vanishing (when training was pursued,

DE disappeared from the model’s memory), while the weight of the actual units went

on to increase. We postpone to the general discussion the explanation of this

astonishing performance.

Fig. 1. Changes over training of the weights ascribed to the different pairs of phonemes by Parser. The pairs DA

and BE, as well as all the other inter-rime pairs, are not represented, because they were absent from model’s

memory.
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3.3. Comparing the predictive power of SRN and Parser

The results of the above experiment are reprinted in Table 5 for comparison with the

models’ predictions. None of the models provided a close approximation. However,

comparisons of the overall patterns of correlations at a qualitative level leads to the

conclusion that Parser provides a better fit than the SRN. Indeed, Parser, like human

participants, is sensitive to the two-way dependency between e1 and e2, and not only to

the TP as usually computed ðPðe2=e1Þ). As a consequence, both Parser’s and

actual participants’ performances are essentially determined by the contingency, as

measured by rw:

4. General discussion

We first described several measures of association clearly hierarchized on a dimension

of complexity and sophistication, going from the simple co-occurrence frequency to the

normative measure of contingency, rw: Then we explored which of these measures are the

most predictive of human behavior, using the support of sensitivity to the VC terminal

endings of words in French. Our experiment showed that children and adults felt that

syllables sound like French words the higher the contingency between V and

C. Surprisingly, the forward TP ðPðC=VÞÞ; which is the main measure considered by

language researchers, was a poor predictor of performance, whereas the backward TP

ðPðV=CÞÞ made a sizeable contribution.

The ability of different models to account for these results was assessed through a

comparison of an SRN, which is the connectionist network the most frequently used to

simulate performance in sequential language tasks, with Parser, a computational model

implementing the idea that the sensitivity to statistic regularity is the by-product of the

natural attentional processing. Somewhat ironically, Parser, which implements no specific

mechanisms for statistical computations, proved to be a better predictor of performance

than the SRN, which was devised to learn statistical structure. In the following, we will

discuss the generality of these results, dealing with empirical data and the models in turn,

and then we will conclude on the implications of this study for the issue of automaticity.

4.1. Can be our empirical results generalized?

The fact that our data were collected on large samples of children and adults gives

reasonably good assurance for their robustness in so far as intra-syllabic relationships

are concerned. However, one may question whether the role of contingency, and the role

of both forward and backward TP are fairly general over tasks and material. Our results

appear to be partially at variance with those obtained in other areas of research. For

instance, Shanks (1995) suggests that DP is the best predictor of performance in a

variety of associative learning paradigms. This apparent discrepancy may support the

distinction that Shanks draws between causal and structural relationships (Shanks, 1995,

p. 2). Associative learning paradigms such as classical or operant conditioning could

involve causal relationships, whereas the intra-syllabic relationships between phonemes,
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despite their temporal succession, could be structural in nature. It is also possible that

the role of the backward TP has been underestimated, due to an exclusive focus on

forward relationships, the use of which seeming to be, a priori, more rational. For

instance, well-documented phenomena such as cue competition, blocking, and

overshadowing, suggest that the degree to which a given conditioned stimulus is the

only predictor of an outcome is quite relevant in the context of assessing the strength of

a relation in the conditioning area.

Regarding more specifically the domain of language, the nearly exclusive focus on one, or

at best two measures of association, does not allow any firm conclusion. For instance, the

studies conducted by Aslin et al. are often taken as providing a compelling case for the role of

forward TP. In fact, these studies take care of disentangling TP and relative frequency, but

they do not envision the role of other statistical measures. Let us consider for example the

material used in Saffran et al. (1996). The mean forward TP is 0.675 for intra-words pairs of

syllables and 0.137 for between-words pairs, which means that this information may be used

for the discovery of words, as Saffran et al. pointed out. However, the mean backward TP are,

respectively, 0.655 and 0.146, which means that this measure is almost as predictive of words

boundaries as forward transitional probabilities. The same is true for forward and backward

DP and for rw (in each case, the coefficients for intra-words pairs of syllables were above

0.60, whereas the coefficients for between-words pairs were lower than 0.12).4 Of course, the

fact that a piece of information is available in the data does not imply that it is exploited by the

subjects. Pending further studies, we are limited to speculation. It could be argued, for

instance, that the relations between V and C would represent a special case on the ground that

there are more V than C. In fact, at least in French, the number of V is nearly identical to the

number of C (16 vs. 18, respectively). Other arguments, however, are more difficult to rule

out. For instance, the succession of V and C in a diphone occurs in very close time succession.

This may promote the formation of bi-directional associations, and hence, the role of rw; at

the expense of the forward TP. By contrast, the associations between syllables or words,

which are more remote in time, could be more sensitive to directionality. Further studies are

needed to explore whether these factors are powerful enough to undermine the generality of

our experimental results, or whether our main conclusions can be applied to other areas of

language, such as word segmentation, and beyond, morphology, word classes, phrase

structure, and lexical semantics (to cite the domains explored by Redington and Chater

(1998), in their overview on the role of distributional information in language).

4.2. About connectionist models

Our study confirms the nearly exclusive sensitivity of an SRN to the forward

transitional probabilities. This does not mean that the quasi-identity we obtained between

SRN’s prediction and the simple TP between V and C is general. This result is due to the

fact that, in the material used for simulations, no information was provided by the items

preceding any given V, because the VC rimes were displayed in randomized order. If there

4 Transitional probabilities were computed in analytic ways, whereas DP and rw were approximated in Monte-

Carlo simulations. In all cases, computations were performed after eliminating the two pairs of syllables that

occur both in intra-words and between-words positions (bupa and babu).

P. Perruchet, R. Peereman / Journal of Neurolinguistics 17 (2004) 97–119112



were some grammatical constraints in the succession of VC rimes, the network could have

exploited the information about second- or higher-order dependency available in the

material, and its predictions would have outperformed the calculation of the simple, one-

order TP. However, we believe it to be a robust conclusion that in the hierarchical set of

association measures presented in the first part of this article, an SRN is linked to an

intermediary level that makes it relatively insensitive to the raw co-occurrence frequency

on the one hand, and to more sophisticated measures of associations on the other hand

(by ‘relatively insensitive’, we mean insensitive to the specific information brought out by

these measures, once their correlations with forward TP have been partialized out).

SRN’s relative insensitivity to the row frequency of co-occurrence is certainly a feature

inherent to any connectionist models, because it is due to the high level of interference

characteristic of neural networks. Although this characteristic is generally construed as

beneficial, it can also be detrimental in some occasions. For instance, Boucher and Dienes

(2003) show that a non-connectionist model, the Competitive Chunking model developed

by Servan-Schreiber and Anderson (1990), proved to be a better predictor of performance

than an SRN in an artificial grammar learning task, thanks to its relative immunity to

interference processes.

By contrast, the exclusive sensitivity of an SRN to one-way dependency, and its

resulting incapacity to make predictions matching a bi-directional measure of contingency

such as rw; cannot be taken as inherent to connectionist networks. Indeed, this feature is

derived from the SRN’s algorithm. It is not due to the objective of an SRN per se, namely

to make predictions on the next event, but instead to the fact that the algorithm makes

predictions independent from whether the predicted outcomes are shared by a number of

different inputs or not. In order to examine the capability of other connectionist networks

to reproduce our results, and more generally to detect genuine contingency relationships,

we explored how an auto-associator performs when exposed to the same corpus as that

used above (Table 3). Data were entered as a succession of pairs of phonemes. The input

and output layers of the auto-associator comprised 28 units (one for each of the 14 different

phonemes reported in Table 3, with a different unit for each phoneme according to whether

it was in first or in second position within the pair). The hidden layer comprised 14 units.

The other parameters were set as for the SRN above. The network indeed learned AB,

which is the most contingent pair, better than most of the other pairs. However, there were

exceptions: ED and DE were learned still more rapidly, although ED is the less contingent

among the words, and DE is a between-word unit. Of course, these exploratory results

cannot be taken as conclusive. We are quite confident that other networks can be designed

to extract selectively the contingent items composing the material used in this article. The

point that remains to elucidate is the extent to which these adapted networks will be

specifically designed devices, or will be grounded on ubiquitous principles of cognitive

functioning, as Parser is.

4.3. Why is Parser a so good learner?

Parser (Perruchet & Vinter, 1998) was initially designed to account for the

segmentation into words of the artificial languages developed by Saffran et al. (1996),
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in which a few words are displayed in random succession. Because simple frequency

brought out substantial information about words in those languages, one might suspect that

Parser is restricted to the exploitation of such information. As a case in point, Hunt and

Aslin (2001) wonder about the ability of Parser to discover words in a frequency-balanced

task. Although not directly addressing the word segmentation issue, the present study

shows that the model is able to discover the units composing a continuous sequence,

even though the material was frequency-balanced, on the basis of more elaborate statistics

than co-occurrence frequency measures. Moreover, Parser was able to correctly eliminate

a between-rimes pair that the exclusive consideration of statistics should have lead

to select.

The sensitivity of Parser to contingency relationships as indexed by rw; which is the

normative measure of association, is all but mysterious. It lies in the fact that the model

simulates the action of interference mechanisms. For instance, whenever A or B are

presented in other contexts as the unit AB, they interfere with AB, resulting in a

decrement of the weight of AB. Now, if AB is strongly contingent, this means that

neither A nor B will be frequent in other contexts, and hence AB will receive no, or

only a small amount of interference. Conversely, if AB is not (or negatively)

contingent, this means that A and B are frequent events out of the AB unit, and

therefore, interference will strongly reduce the weight of AB. Interestingly, modulating

the parameter of interference makes Parser more sensitive to the contingency between

events than to the relative frequency of co-occurrence (when the interference value is

high) or more sensitive to the co-occurrence frequency than to the contingency (when

the interference value is low). It is even possible to make the model exclusively

sensitive to forward relationships, as an SRN (the interference should be limited to the

A event) or to backward relationships (the interference should be limited to the B

event).

Arguably, if the regulation of the interference parameter is purely ad hoc, without

any possible external justification, the resulting good fit with people performance is of

minor interest, and the model incurs a risk of unfalsifiability. The ideal situation is

certainly when the level and the nature of interference can be set on a priori bases.

Unfortunately, this situation may be the exception rather than the rule. Although the

process of interference has been extensively studied in the literature on learning and

memory, predicting when interference will and will not occur is not an easy task.

However, the justification can also be provided a posteriori. If it turns out that the

statistics to which humans are sensitive vary as a function of the tasks and the

materials, the link that Parser suggests between the human sensitivity to various

statistical measures of association and interference processes offers a potential avenue

of investigation. Assuming for instance that further studies confirm that syllabic or sub-

syllabic units are based on contingency whereas word segmentation is based on forward

TP, it should be possible to examine whether interference processes operate differently

in both cases through independent methods.

A somewhat more surprising ability of Parser was the elimination of a between-

rimes unit (DE), despite the fact that this unit was the most frequent pair of all the

material, and compared favorably to many of the rimes with regard to the other

statistics? In fact, Parser is not sensitive to the distributional properties of the material
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in the same mechanical way as an SRN. As in Brent and Cartwright (1996) model, unit

extraction depends on the overall consistency of the segmentation, because the units,

which stands for attentional chunks, are discrete and disjunctive. Although DE is first

considered as a relevant unit, its consolidation is precluded (Fig. 1), because it is not

compatible with a convenient segmentation of the adjacent material. This property of

Parser expands considerably its relevance for natural language, because it is the case

that, in natural language, intra-word constituents are more closely associated than inter-

word constituents, but only on the average (e.g. the phonemes corresponding to

between-word clusters such as /so/, present in the expression ‘piece of’, are certainly

more closely associated than those composing a number of rare words, as for example /

sd/ in ‘disdain’).

To conclude, it should be misguided to consider that because Parser implements

simplistic principles, it is underpowered whenever the information contained in the

input becomes more sophisticated than raw frequency. On the contrary, as far as the

situation investigated here is concerned, Parser turns out to exploit the relevant

information in a much more clever way than the connectionist networks that we have

explored as yet. This outcome confirms that Parser is not limited to deal with Saffran

et al.’s (1996) artificial language for which it was initially designed, and extends further

Parser’s ability to learn from various situations, as revealed in recent studies (Peereman

et al., 2003; Perruchet, Galland and Peereman, submitted; Perruchet, Vinter, Pacteau, &

Gallego, 2002).

4.4. About the automaticity of statistical computations

As pointed out in the introductory section, the sensitivity to phonotactic or graphotactic

regularities is unquestionably the end-product of implicit learning processes in several

respects. Learning is incidental, and the regularities which people are sensitive to cannot

be verbalized, except if they are the target of time-consuming and costful analyses of the

contents of one’s memory. These two criteria are those that are commonly retained to

define implicit learning (e.g. Cleeremans et al., 1998). However, this does not resolve the

question of knowing the very nature of the mechanisms involved in learning distributional

information.

The most common conception consists in attributing the discovery of statistical patterns

to mechanisms analogue to those that are implemented in connectionist networks. In other

words, statistical regularities are discovered through the involvement of algorithms that

have been specially designed to learn statistical regularities. For instance, an SRN is

designed to learn the next element of a sequence, and in order to do that, its weights are

modified through back-propagation as a function of the errors made in earlier predictions.

The involved algorithm is ad hoc, in so far as there is no independent evidence that actual

neural systems are modified through backpropagation (as acknowledged, e.g. by Elman

et al. (1996)). More importantly for our concern, the mechanisms recruited for performing

statistical analyses are fully automatic. They are unrelated to attention and to conscious

experience.
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We submit that the automatic computation of statistical measures is not a mandatory

postulate. That is not to say that the computation of statistics is the endeavor of

controlled or conscious processes. Our proposal is that there is no computation at all.

Accordingly, Parser performs arithmetic operations. Although they are limited to a few

additions and subtractions, it may be argued that, by the fact, Parser does not differ

from other computational models such as connectionist networks. In fact, the point is

not the degree of sophistication of the mathematical operations, but their objective. To

draw an analogy, predicting the depth at which a hammer-stroke will drive a nail in a

piece of wood may involve complex mathematical operations; However, nobody, we

guess, would claim that the actual effect of the hammer is the result of a computational

process. This is because the objective of computations is to simulate processes that are

physical, not computational in nature. Likewise, the objective of the operations

performed by Parser consists in mimicking with a digital computer the results of all-

purposed biological mechanisms, the existence of which is independently asserted.

Indeed, the only mechanisms involved in Parser are the strengthening of traces with

repetitions, and their forgetting through decay and interference.5 Arguing that

strengthening and forgetting processes, which can be observed in any living organisms,

involves computations, leads to deprive the word ‘computation’ from any informative

content.

In one sense, our proposal reiterates the story surrounding the status of the rules,

which evolved over recent decades. From the observation that human behavior is

consistent with the general rules governing language and other materials, most

investigators concluded that subjects extracted and applied those rules. Because these

operations were not available to conscious thought, the concept of cognitive

unconscious was created to account for rule extraction. Then it becomes increasingly

obvious, in many domains such as reasoning, implicit learning, or language, that one

must distinguish between a system that follows rules from one that simply conforms

to rules (to borrow the distinction proposed by Smith, Langston, and Nisbett (1992)).

A ball falling on the ground conforms to the law of gravity, but does not follow this

law. Straightforward evidence has been gathered in the last years to support the idea

that sensitivity to rule-governed material may be a by-product of the extraction of

statistical regularities. Now, in the same way that sensitivity to rules has been

commonly attributed to an automatic rule-extraction device, the sensitivity to

statistical regularities is commonly attributed to the automatic computation of

statistics. The concept of cognitive unconscious remains central, even though its main

function has changed. Our proposal is that, to paraphrase Smith et al., one must

distinguish between a system that follows statistical regularities from one that simply

conforms to statistical regularities. Human sensitivity to statistical structure is not a

proof of statistical computation, because it can be more simply the by-product of the

attentional processing of the incoming information.

5 Our reasoning does not exclude that these ubiquitous biological processes evolved through natural selection,

partly because they enabled the living organisms to adjust their behavior to environmental contingencies, which is

essential for survival.
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Appendix A

The usual presentations of rw in statistic textbooks demonstrate its equivalence with

the standard product–moment correlation when data are dichotomic, and point out the

relation of rw with the statistic x2 ðrw ¼
ffiffiffiffiffiffi
x2=N

p
Þ: However, we are aware of no

reference mentioning its relation to DP: Here is a way to derive the usual formula of

rw (Eq. (5), see text) from Eq. (6), which define rw as the geometric mean of DP

and DP0:

rw ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
DP £ DP0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

a þ b
2

c

c þ d

� �
a

a þ c
2

b

b þ d

� �s

The formula can be re-written as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
aðcþdÞ2cðaþbÞ

ðaþbÞðcþdÞ

! 
aðbþdÞ2bðaþcÞ

ðaþcÞðbþdÞ

!vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
acþad2ca2cb

ðaþbÞðcþdÞ

! 
abþad2ba2bc

ðaþcÞðbþdÞ

!vuut

¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acþad2ca2cb

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞðcþdÞ

p

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abþad2ba2bc

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþcÞðbþdÞ

p

!

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2bcþa2cd2a2bc2c2abþa2bdþa2d22a2bd2abcd2a2bc2a2cdþa2bcþc2ab2b2ac2abcdþb2acþb2c2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞðcþdÞðaþcÞðbþdÞ

p

The denominator is the denominator of the usual formula.

The numerator can be re-written as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2d2 2 2abcd þ b2c2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðad 2 bcÞ2

q
¼ ad 2 bc
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Appendix B

VC Rimes and syllable pairs used in the Experiment (C þ : highly contingent rimes;

C 2 : not contingent rimes; F þ : frequent rimes; F 2 : rare rimes)
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